Jumbo: Beyond MapReduce for Workload Balancing

_ Sven Groot
Supervised by Masaru Kitsuregawa
Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan

sgroot@tkl.iis.u-tokyo.ac.jp

ABSTRACT

Over the past decade several frameworks such as Google
MapReduce have been developed that allow data process-
ing with unprecedented scale due to their high scalability
and fault tolerance. However, these systems provide both
new and existing challenges for workload balancing that
have not yet been fully explored. The MapReduce model
in particular has some inherent limitations when it comes
to workload balancing. In this paper, we introduce Jumbo,
a distributed data processing platform that allows us to go
beyond MapReduce and work towards solving the load bal-
ancing issues.

1. INTRODUCTION

With the ever growing amounts of data that companies
and research institutions have to process, there has been a
growing need for scalable and fault tolerant systems that
allow the processing of such large volumes of data. When
processing terabytes or even petabytes on large clusters of
commodity hardware, hardware failures are to be expected
on a daily basis and traditional database systems don’t offer
the facilities required to cope with this situation, nor can
they scale sufficiently.

Because of this, the last decade has seen a move away
from the relational database model towards more special-
ized solutions to store and process large amounts of data.
Perhaps the most well known data processing platform to
emerge from this need is Google’s MapReduce [2][3][4]. It
provides a simple programming model and an environment
to execute MapReduce programs on large clusters that au-
tomatically handles scheduling and fault tolerance. This is
accomplished by using the redundant storage of the Google
File System [5] and by providing automatic re-execution of
small portions of the job in case of failures.

The MapReduce model has gained widespread adoption
even outside of Google, largely thanks to the open source
implementation provided by Hadoop [1]. But for all its ad-
vantages, MapReduce is a very inflexible model that was de-

Copyrightis heldby theauthor/owner(s).
VLDB 2010PhDWorkshop,Septembef3,2010,Singapor

signed to solve the specific data processing needs of Google,
and is now being used for things it was not designed to
cope with. This has been explored in [10] which compares
MapReduce to parallel databases.

One important aspect when doing processing on large
clusters is the ability to absorb heterogeneity. When re-
placing failed components or expanding the capacity of a
cluster it is nearly impossible to guarantee that all nodes in
the cluster will have the same capabilities in terms of CPU,
disk or network speed. In addition, it might be the case that
a cluster is being used for other work that could be outside
of the control of the data processing framework. In this case,
we might find some nodes are performing more slowly than
usual because they are busy with other tasks.

Cloud computing adds additional complexity to this prob-
lem. One issue is scale; MapReduce and similar batch pro-
cessing systems are often used on larger clusters and with
larger amounts of data than is common for more traditional
parallel databases. The cloud is also meant to be flexi-
ble, with dynamic allocation of computing resources. This
means that today you might be using a different set of com-
puters than yesterday. We have also seen a trend of increas-
ing use of virtualization, where one physical server might
be running many virtual machines. It is therefore hard to
determine what the performance characteristics of the ma-
chines will be.

It is up to the execution environment to make sure we
can optimally use the capabilities of faster hardware, and
to make sure that slow nodes — whether due to hardware
or workload — do not unnecessarily delay the execution of
the jobs. Unfortunately some of the properties of MapRe-
duce can make this more complicated and Hadoop, the most
popular MapReduce implementation, does not have many
provisions for workload balancing at all.

To our knowledge, only limited work has been done on
load balancing in MapReduce!. The effectiveness of specu-
lative execution — a simple load balancing mechanism em-
ployed by Hadoop — in heterogeneous environments has been
studied in [13]. In [12], scheduling map tasks for load bal-
ancing was investigated.

In this paper, we introduce an approach to data processing
that aims to keep the advantages of MapReduce in scalabil-

"Microsoft Dryad [8] is an alternative to MapReduce and
offers a much more flexible programming model which can
alleviate some of these concerns. But due to the perva-
siveness of MapReduce and the limited availability (to our
knowledge) of data concerning Dryad’s functioning in het-
erogeneous environments we have not included it in the com-
parisons provided in this paper.


uqxzhou
Typewritten Text
Copyright is held by the author/owner(s).
VLDB 2010 PhD Workshop, September 13, 2010, Singapore


ity, fault tolerance and ease of use, but that goes beyond the
MapReduce model so it can better address the load balanc-
ing challenges provided by that model. This is an elabora-
tion on the work published in [7].

In the following sections, we will first discuss workload
balancing in MapReduce, and then introduce our own data
processing system, Jumbo, that is intended to address the
issues presented.

2. WORKLOAD BALANCING

In this section, we will look at some of the issues for work-
load balancing that can arise in MapReduce in particular.
Hadoop is used as the reference implementation for MapRe-
duce in this discussion.

The MapReduce model divides a job into a map phase
and a reduce phase. Each of these phases provides its own
issues for workload balancing.

2.1 Map Phase

A typical MapReduce job has more map tasks than can
be run simultaneously on the cluster. For example, a job
using 1TB of input data with a 128MB block size would
have at least 8192 map tasks, and the number can easily be
increased even further.

Hadoop uses a greedy scheduling algorithm for these types
of tasks, which means that each node will be assigned a new
task as soon as it finishes the last one. As a result, nodes
that are slower at processing map tasks will automatically
run fewer tasks than faster nodes. In this sense, the map
phase is self-balancing.

However, map tasks can still have load balancing issues.
The Hadoop scheduler attempts to schedule map tasks on
nodes that have the relevant input data, but when a node
no longer has any data for any of the remaining map tasks,
it will be assigned a non-local task. In this case, the node
has to read data from another node, and network transfer
or disk speed at the source node may limit the execution
time. This might leave the processing power available on
that node not fully utilized, because it is waiting for data.

The placement algorithm for DFS blocks and the sched-
uler’s ability to minimize the number of nodes that need
to run tasks against non-local data are therefore impor-
tant attributes when load balancing map tasks. Currently,
Hadoop’s data placement algorithm is random and doesn’t
try to optimize data placement for job execution.

This issue is likely to come up in cloud environments.
One of the properties of the cloud is that you can easily
increase your capacity to meet increased demand. If you
were normally using one hundred nodes, but today have
scaled up to one thousand, most of those nodes do not have
any data, and cannot be optimally utilized until they do.

Another issue can occur if one of the nodes is unexpectedly
much slower in processing certain map tasks. If this happens
to the last remaining map tasks, this can hold the entire job
up, as the reduce phase cannot start until all map tasks are
completed. The mechanism Hadoop uses to prevent this is
speculative execution: when there are no more map tasks
to schedule, Hadoop will execute already running map tasks
on multiple nodes in the hopes they can finish them sooner.
While this works reasonably well, it does lead to duplication
of work and is therefore not an optimal strategy.

2.2 Reduce Phase

Contrary to the map phase, a job typically has only as
many reduce tasks as the cluster can execute simultaneously,
or slightly less. While it is possible to use more reduce tasks,
this is not recommended. Every reduce task needs data
from all map tasks, and can therefore not finish until all
map tasks have finished. Reduce workers will shuffle and
merge the intermediate data in the background while the
map tasks are still running, so that all data is available soon
after the last map task finishes. If there are more reduce
tasks than the cluster can simultaneously execute, some of
these tasks will not be started until after the previous reduce
tasks finish. These tasks therefore do not have the ability to
do any processing during the map phase, so increasing the
number of reduce tasks beyond the cluster’s capacity will
increase the execution time of the job.

Because there are no more tasks than the cluster can run,
reduce tasks do not have the self-balancing nature of map
tasks. Once a node completes its reduce tasks, there will be
no more work for it to do for this job. If one node finishes
faster (for example because it has faster CPUs or disks, or
because it has less other work to do), it cannot take any of
the work from the other nodes. As such, the slowest reduce
task determines the execution time of the entire job.

When the intermediate data is large, reduce tasks can
make up a large part of the execution time of the job. If the
input data to a single reduce task does not fit in memory
(which is common), it needs to perform an expensive exter-
nal merge sort. This is a disk intensive process, so nodes
with faster or more disks can finish considerably sooner.

The only way to balance the reduce tasks is to attempt
to assign more data to faster nodes. How much data each
nod receives depends purely on the partitioning function
and on how many reduce tasks it can run in parallel. The
partitioning function does not know which task is assigned
to which node so it is ill-suited to perform load-balancing.

Although you can assign more work to a node by having
it run more reduce tasks in parallel, this is a very coarse-
grained mechanism, and running more tasks in parallel on
a single node can have negative effects when they are con-
tending for the same resources such as disks. This approach
is also only suited for static load-balancing, as the number
of reduce tasks for a single node cannot be adjusted during
job execution.

2.3 Complex Algorithms

The MapReduce programming model is very inflexible. It
imposes a rigid structure that your job must adhere to, and
if your algorithm does not follow this model exactly, you will
often have to work around the limitations. In practice, this
means that many complex algorithms will need more than
one MapReduce job.

The necessity to have multiple jobs has several disadvan-
tages. Intermediate data between the jobs has to be saved
on the distributed file system which can cause unnecessary
overhead. Because it is not possible for a MapReduce job
to start until all its input data is available, each following
MapReduce job cannot be started until the previous one has
completely finished.

Additionally, the scheduler is only aware of a single of
these jobs at a time. It does not know the overall structure of
the algorithm, and has only limited information with which
it can make scheduling decisions.



3. JUMBO

In order to evaluate workload balancing and other issues
in data intensive distributed computing, we have developed
Jumbo, a flexible data processing environment in the spirit
of MapReduce and Dryad. The aim of Jumbo was to provide
a system that maintains the scalability and fault tolerance
aspects of MapReduce, but is more flexible so we can in-
vestigate alternative approaches that would not be possible
with the MapReduce model.

We have decided to develop our own solution, rather than
build on Hadoop, because some of the workload balancing
issues outlined in Sect. 2 are endemic to the MapReduce
model. Hadoop’s implementation is strongly based around
this model, and is therefore not suited to investigating al-
ternative solutions.

Jumbo consists of two primary components, Jumbo DFS
and Jumbo Jet.

3.1 Jumbo DFS

The Jumbo DFS is a distributed file system based on the
Google File System. It uses a single name server to store the
file system name space. Files are divided into large blocks,
typically 128 MB, which are stored on data servers. Each
block is replicated to multiple servers, typically three, and
the replicas are placed in a rack-aware manner for improved
fault tolerance.

Jumbo’s replica placement algorithm is currently similar
to that of Hadoop. Some simple balancing is provided to
prevent nodes from running out of disk space. Jumbo will
also take into account how many clients are currently writing
to a data server when choosing the location for a new replica,
to prevent a single node getting swamped with too many
simultaneous write requests. It is our expectation that we
will refine the data placement algorithm in the future to
provide for improved load balancing.

3.2 Jumbo Jet

The second component is Jumbo Jet, the data processing
environment for Jumbo. It provides a programming model
as well as an execution environment.

Jumbo Jet represents jobs as a sequence of stages, each
of which performs a step in the data processing algorithm.
Each stage is divided up into one or more tasks, where each
task performs the same operation but on a different part of
the data. Tasks provide parallelization and are the unit of
scheduling for Jumbo Jet.

A stage reads data either from the DFS or from a channel
connecting it to a preceding stage, and writes data to the
DFS or a channel connected to a following stage. In order
to divide input data from the DFS across multiple tasks,
it is split into pieces, typically using DFS blocks as a unit.
Intermediate data is partitioned using a user-specified par-
titioning function, so that each task in the stage receives the
same partition from every task in the preceding stage.

Channels connect stages and represent the data flow be-
tween them. Channels control how data is partitioned, and
how the pieces of each partition are merged. This means
that unlike MapReduce we allow the user to decide what
it wants to do with the intermediate data. In MapReduce,
intermediate data is always sorted and grouped by key. In
Jumbo Jet, you can choose to sort it (built-in functionality
for this is provided), but in cases where it isn’t needed, you
don’t have to.

=

DFS

(b) WordCount

Figure 1: Examples of the structure of Jumbo Jet
jobs.

Jumbo Jet provides several types of channels: file, TCP
and in-process.

File channels are the most common type, and are similar
to how intermediate data is treated in MapReduce; inter-
mediate data is stored in files on the local disk, which are
transferred over the network. This method offers maximum
fault tolerance.

TCP channels provide a direct network communication
channel between the tasks of two stages. This has the ad-
vantage of avoiding materializing the intermediate data, but
it puts some constraints on the job structure and is not as
fault tolerant.

Finally, in-process channels are used to provide a mecha-
nism to combine multiple task types into a single, compound
stage. Tasks that are connected using an in-process channel
are treated as a unit by the scheduler and will be executed
on the same node, in the same process. It is possible for an
in-process channel to partition the data, in which case the
outgoing file or TCP channel from the compound task will
use that existing partitioning.

From a load balancing perspective, stages that read from
the DFS behave in a similar manner as the map phase, while
stages that read data from a channel behave in a similar
manner as the reduce phase.

The structure of two simple jobs is provided in Fig. 1 to
provide an example of Jumbo’s processing model. Fig. 1(a)
shows a sorting operation. It has two stages, the first of
which is a compound stage using the in-process channel.
This first stage partitions the data, and then sorts each par-
tition. The second stage gathers the pieces of each partition
and merges them. This mechanism is very similar to how
sorting is accomplished in MapReduce.

Fig. 1(b) shows the Jumbo version of the word count sam-
ple that is often used to illustrate MapReduce. Although
word count is a good example of how to use MapReduce
conceptually, the counting method used — which sorts the
words in the document — is actually very inefficient. A more
straightforward method to do counting is to store the words
in a hash table structure and update the counts incremen-
tally as you scan the document. MapReduce does not allow
you to use this approach.



The word count job in Jumbo has two stages. The first is
a compound stage, the first part of which reads the words
in the document and convert them to a (word, 1) key-value
pair, the same as the approach used by MapReduce. The
second part of the first stage inserts each pair into a hash
table keyed by the word. The second stage of the job is iden-
tical to the second part of the first stage, this time using the
counts produced by the first stage as input. This approach
does not require that the intermediate data is sorted, and is
significantly faster than the MapReduce method.

Job execution in Jumbo Jet is similar to Hadoop and
Dryad. Job scheduling is handled by a single job server,
which is responsible for assigning tasks to individual nodes
in the cluster and recovering from task failures. Each node
runs a task server which receives tasks to execute from the
job server.

3.3 Complex Algorithms

In Sect. 2.3 we mentioned that MapReduce often requires
the use of multiple jobs for complex algorithms, and that
this can limit load balancing efficiency. One of the biggest
advantages of Jumbo’s data processing model is that we can
easily represent these complex algorithms in a single job.

For example, the Parallel FP-Growth frequent item set
mining algorithm proposed in [9] consists of three MapRe-
duce jobs. The structure of this algorithm in MapReduce
is shown in Fig. 2(a). It uses separate jobs for the paral-
lel counting, PFP and aggregating phases of the algorithm,
and also includes a grouping operation that is not done with
MapReduce at all.

This means it suffers from the drawbacks mentioned in
Sect. 2.3. For example, it is likely that the aggregation job
would be able to do some of its work even with partial data.
However, this is not possible because that job cannot start
until the previous one has completed.

Jumbo’s more flexible job structure allows us to repre-
sent the entire algorithm in a single job with six stages, as
shown in Fig. 2(b). The first two stages perform the parallel
counting operation; this can also benefit from the more effi-
cient hash table counting approach mentioned earlier. The
grouping operation is also part of the job structure, but is
still not parallelized because this is not necessary. The last
three stages perform the PFP and aggregation operations;
here we can eliminate the map phase from the aggregation
because it existed only to repartition the data, something
Jumbo can do directly.

The scheduler will now be able to see the entire job struc-
ture at once, and will be able make better load balancing
decisions. Although the PFP stages must wait until group-
ing is complete, Jumbo can still already schedule and start
some of these tasks, and they can prefetch some data from
the transaction database while they wait for the grouping
data to be available. The aggregation phase can already be-
gin its work even with partial data. These things would not
be possible with Hadoop.

4. EXPERIMENTATION

We will demonstrate some of the load balancing issues
discussed using two simple examples. We show two experi-
ments on both Hadoop and Jumbo, using the GraySort and
WordCount jobs, both of which are included as an exam-
ple in Hadoop. The implementation for these jobs used in
Jumbo was given in Sect. 3.1.

1000
200
800
700
600

3

£ s00

$ 400
300
200

100 —e—Jumbo Hadoop
0 T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55
Nodes
(a) GraySort
1000
—e—Jumbo Hadoop
900
800 ——Jumbo (data imbalance) —~Hadoop (data imbalance)
700 e
600
2 500
g 400
300
200

100 ————

(b) WordCount

Figure 3: GraySort and WordCount performance
for Hadoop and Jumbo. Up to 40 nodes, all nodes
used are identical; only in the 56 nodes case was a
heterogeneous environment used.

Two sets of nodes were used for this experiment: 40 older
nodes, with 2 CPUs, 4GB RAM and one disk, and 16 newer
nodes with 8 CPUs, 32GB RAM and two disks.

Fig. 3(a) shows the results the GraySort experiment. Up
to 40 nodes, we used only the older nodes. Then for the
56 nodes experiment, the 16 newer nodes were added. We
increased the amount of data as we increased the number of
nodes, maintaining 4GB of data per node. This means that
ideally, the results of each experiment should be the same,
except for the 56 node experiment which should be faster.

In GraySort the size of the intermediate data is very large,
and an external merge sort is required to sort it. Up until
20 nodes, the increasing number of merge passes required
causes a slowdown in the sort time. From there to 40 nodes
only a small slowdown is observed which is due to communi-
cation overhead. Both Hadoop and Jumbo show very similar
profiles because they use a similar sorting method.

Jumbo’s speed advantage is caused primarily by the way
Hadoop transfers intermediate data between nodes; at one
time many reduce workers may be reading data from the
same node. On this particular cluster that has a very high
impact on performance. Hadoop’s sorting implementation
is also more CPU intensive than Jumbo’s.

When we go from 40 to 56 nodes, we expect to see a speed
increase because the 16 additional nodes are much faster,
and indeed this is the case. The self-balancing nature of
tasks reading DFS data means that the map phase (or first
stage in Jumbo) can finish sooner, increasing the speed of
the job.

However, this speed increase is not optimal, because the
reduce phase (merge stage in Jumbo) is affected by the issues
mentioned in Sect. 2.2. The 16 faster nodes finish consider-
ably sooner than the 40 slower nodes, as shown in Fig. 4. For



Input
data

Group list

Frequent list
Integrated data

— —
Parallel Grouping
counting

Final
answer

Temp. answer

Y
Parallel
FP-Growth

(a) MapReduce

1
1
] d
Input ; - Integrated Final
data i "B A M data result
! n
1 H
b
1
| e e e e e e e
llel —~
Para .e Grouping Parallel Aggregating
counting FP-Growth
(b) Jumbo

Figure 2: The Parallel FP-Growth algorithm with MapReduce and Jumbo. The MapReduce version uses

three jobs, while the Jumbo version has only one.

600

500

400

Seconds

200

100

1 83 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
Node

Figure 4: Execution times of individual nodes in
the cluster for Jumbo GraySort. Nodes 1-40 are the
older, slower nodes, while 41-56 are the faster ones.

the remainder of the job, the faster nodes are not utilized,
wasting their processing power.

It can also be seen that even amongst the identical nodes,
various external factors cause these nodes to also have varied
execution times. It is therefore clear we need to be able to
do dynamic balancing that can respond to these factors as
needed.

The second experiment uses WordCount. Contrary to
GraySort, this job has only very small amounts of interme-
diate data, and the reduce phase (second stage in Jumbo)
has very little work to do and finishes just a few seconds af-
ter the last map task. Imbalance such as that demonstrated
by GraySort will therefore not be seen.

Instead, this experiment will be used to demonstrate the
effect of data placement. In this job we again increased the
amount of data with the number of nodes, maintaining 2GB
per node for each run, and first used our 40 slow nodes and

11

then added the 16 faster ones. We then repeated the 20,
40 and 56 node experiments but this placed all the data for
those jobs on only the first 10 nodes. This means that in
the 56 node experiment the input data is still 112GB in size,
but all of it is on the first 10 nodes and the remaining nodes
need to read their input data from those nodes.

The result is shown in Fig. 3(b). With the data on all
nodes, up to 40 nodes the result shows linear scalability,
particularly for Jumbo. Jumbo is considerably faster than
Hadoop because of the hash table counting method, which
avoids the expensive sorting operation.

When going to 56 nodes we see a speed increase as ex-
pected. Hadoop shows a larger relative speed increase be-
cause WordCount in Hadoop is much more CPU intensive
than in Jumbo, so it benefits more from the fast CPUs in
the 16 new nodes. Because the reduce phase (second stage
in Jumbo) has so little work, the imbalance observed in
GraySort is not seen here.

However, if we put data on only 10 nodes, performance
suffers considerably. The job’s performance is now limited
by the I/O speed of those 10 nodes, and the CPU speed
of the remaining nodes can no longer be fully utilized. The
more nodes we add, the bigger the imbalance, and the bigger
the performance gap. For the 56 node experiments, the 16
faster nodes show only around 35% CPU usage for Hadoop,
and around 10% for Jumbo (compared to 100% for both
with the data properly distributed on all 56 nodes). This
means a large amount of computing power is left unused.

It can also be seen that Jumbo has a bigger relative slow-
down than Hadoop when the data is on 10 nodes. This
is again because Hadoop’s version of WordCount is much
more CPU intensive. In fact, it’s so CPU intensive that



when using 20 nodes Hadoop doesn’t suffer at all from the
data imbalance.

5. FUTURE WORK

For our future work, we intend to focus on the issue of
complex algorithms such as Parallel FP-Growth. This is-
sue encapsulates many of the other low-level issues, so we
can address those within this context. This also offers the
biggest opportunity to use the greater flexibility of Jumbo
by focusing on algorithms that are not easily represented in
MapReduce.

Absorbing heterogeneity in distributed systems has been
studied in the past [11][6], but not much has been done
for the kind of highly scalable, fault tolerant frameworks
discussed in this paper. Some of the issues will be related,
in which case we will attempt to apply existing solutions in
this context.

But there are also new issues presented by this environ-
ment. The larger scale and flexible nature of the cloud
means making assumptions about the environment is more
difficult, and the data intensive nature of these systems
means that the simple act of trying to move work to an-
other node can cause additional delays because of the I/O
incurred by the move. These issues must all be considered
carefully.

Additional difficulty arises because in both MapReduce
and Jumbo, tasks are arbitrary programs written in lan-
guages like Java or C# rather than a more structured ap-
proach like SQL. This makes it very hard to develop accurate
cost estimates to base decisions on. Accurate progress indi-
cations are also difficult because of this, and these are vital
in determining how and where to move work.

We will continue the development of Parallel FP-Growth
and other complex data mining algorithms, and then build a
load balancer that can address the issues described. We will
modify Jumbo as needed to support our needs in this area,
though it is our expectation that some of the techniques
developed will also be applicable to other systems such as
Hadoop.

Complementary to this issue is the problem of configu-
ration. Determining the optimal configuration to use with
Hadoop or Jumbo for any particular cluster is very hard.
There are many parameters, and the effect of each of them
is not always obvious. In heterogeneous environments, dif-
ferent nodes need different configurations, and the optimal
configuration for one job might not work for another. As
part of our efforts, we will attempt to let the system auto-
matically determine the optimal value for some configura-
tion parameters based on the environment.

Since scale is an important factor in all of this, we will
also increase the scale of our experimental environment. A
larger cluster for this purpose is already under construction.

6. CONCLUSION

Load balancing in heterogeneous clusters is a complex is-
sue that is only made more complex by the large scale and
operational complexity of modern distributed systems.

The development of highly scalable and fault tolerant sys-
tems such as MapReduce has enabled data processing with
unprecedented scale. The issue of load balancing in these
environments is however still largely unexplored. The sim-
plistic load balancing abilities of existing frameworks, such

as Hadoop’s speculative execution, simply aren’t sufficient
to efficiently use all the resources in a heterogeneous cluster.

Going forward, the data processing capabilities of Jumbo
will allow us to explore these issues and will give us the
flexibility to deviate from the rigidity of MapReduce where
necessary while still maintaining its properties of scalability
and fault tolerance.

7. ACKNOWLEDGEMENTS

The author would like to thank Kazuo Goda for his help
in preparing this paper.

8. REFERENCES

[1] Apache. Hadoop core.
http://hadoop.apache.org/core.

[2] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI’0/, page 10,
Berkeley, CA, USA, 2004. USENIX Association.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107-113, 2008.

[4] J. Dean and S. Ghemawat. MapReduce: A flexible
data processing tool. Commun. ACM, 53(1):72-77,
2010.

[5] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In SOSP ’03, pages 29-43, New
York, NY, USA, 2003. ACM Press.

[6] K. Goda, T. Tamura, M. Oguchi, and
M. Kitsuregawa. Run-time load balancing system on
san-connected pc cluster for dynamic injection of cpu
and disk resource - a case study of data mining
application. In DEXA, pages 182-192, 2002.

[7] S. Groot, K. Goda, and M. Kitsuregawa. A study on
workload imbalance issues in data intensive
distributed computing. In DNIS, pages 27-32, 2010.

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. SIGOPS Oper. Syst. Rev.,
41(3):59-72, June 2007.

[9] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y.

Chang. Pfp: parallel fp-growth for query

recommendation. In RecSys 08, pages 107-114, New

York, NY, USA, 2008. ACM.

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.

DeWitt, S. Madden, and M. Stonebraker. A

comparison of approaches to large-scale data analysis.

In SIGMOD ’09, pages 165-178, New York, NY, USA,

2009. ACM.

M. Tamura and M. Kitsuregawa. Dynamic load

balancing for parallel association rule mining on

heterogenous pc cluster systems. In VLDB ’99, pages

162-173, San Francisco, CA, USA, 1999. Morgan

Kaufmann Publishers Inc.

C. Yang, C. Yen, C. Tan, and S. Madden. Osprey:

Implementing mapreduce-style fault tolerance in a

shared-nothing distributed database. In ICDFE 10,

2010.

M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and

I. Stoica. Improving mapreduce performance in

heterogeneous environments. OSDI, 2008.

(10]

(11]

(12]

(13]





